Waterworks District No. 8 diligently safeguards its water supplies, and throughout 2019, the water supply met all U.S. EPA and State drinking water health standards

Published June 2020
The City of Simi Valley/Waterworks District No. 8 (City/District) is committed to providing you a reliable supply of cost-effective, high quality drinking water. This Water Quality Report is provided annually to all customers we serve. We thank you for taking the time to read the report and proudly look forward to serving you, your family, and/or your business now and in the future.

The City/District distributes 19 million gallons of water each day to more than 26,000 homes and businesses within the community. This report provides information about the water sources, the compounds present in the water, and the drinking water safety. The City/District must meet stringent water quality standards established by the U.S. Environmental Protection Agency (U.S. EPA) and the State Water Resources Control Board (State Water Board), and must test the water frequently to assure it reliably does so. The City/District works diligently with our neighbors, our partners and suppliers to continually improve the quality of the water supply, the protection of our water sources, the reliability of supply and the integrity of our storage and distribution system.

For additional information about your drinking water, e-mail Melisa Silverheels msilverheels@simivalley.org with the City/District or call 805-583-6469.

The City/District supplies water to approximately sixty-five percent of Simi Valley residences, businesses, and institutions, and Golden State Water Company supplies the remainder. Your water bill is a sure way to determine which water purveyor serves you, or you may call us at 805-583-6469.

Este aviso contiene instrucciones para obtener información importante acerca de su agua potable. Si necesita asistencia en Español, por favor llame a Maria Godinez al 805-583-6347.
Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons, for example, those with cancer who are undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, or infants; can be particularly at risk from infections. These people should seek advice about their drinking water from their health care providers. The U.S. EPA and the Centers for Disease Control (CDC) provide guidelines on the appropriate means to lessen the risk from infection by Cryptosporidium and other microbial contaminants. These guidelines are available from the U.S. EPA Safe Drinking Water Hotline at 800-426-4791.

Metropolitan initiated a Fluoride Optimization Program in November of 2007 based upon the overwhelming evidence that water fluoridation is an aid to public health, as it helps prevent dental decay. Metropolitan adjusts the natural fluoride level in its water, ranging from 0.1 to 0.4 parts per million (ppm), to the optimal level of 0.7 ppm for dental health. If you or family members are taking fluoride supplements, please consult with your dentist or dental healthcare provider for further advice.

All drinking water, including bottled water, contains at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health risks may be obtained by calling the Safe Drinking Water Hotline at 800-426-4791.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include those listed below:

- **Inorganic contaminants**, such as salts and metals that can be naturally occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water run-off, agricultural application and septic systems;
- **Microbial contaminants**, such as viruses and bacteria that may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife;
- **Radioactive contaminants**, that can be naturally occurring or the result of oil and gas production and mining activities;
- **Pesticides and Herbicides**, that may come from a variety of sources such as agriculture, urban storm water run-off and residential uses;

Lead in drinking water most commonly is the result of using lead components in water service lines to home and in-home plumbing systems. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead was not detected in the City/District water supply. The City/District can only control the piping to the point of a meter serving a property; the plumbing system on the home’s side of the meter is controlled by the property owner. You can minimize the potential for lead exposure by flushing your tap before using the water for drinking or cooking when your water has been sitting for several hours. If you are concerned about lead in your water, you may have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. The State of California now requires that all public schools built before 2010 test for lead in their drinking water by July 1, 2019. None of the sixteen schools within the City/District service area had test results over the maximum contaminant level of 15 ppb.

In order to ensure that tap water is safe to drink, the U.S. EPA and the State Water Board prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. The State Water Board’s regulations also establish limits from contaminants in bottled water that provide the same protection for public health.

The City/District has also conducted a source water assessment of its groundwater supplies in 2009 and 2011, and found the sources were most vulnerable to neighboring agricultural operations, gravel mining, and nursery operations; however, no contamination from these sources was detected.
CONSTITUENTS TESTED FOR AND NOT DETECTED

In addition to the information provided in the Water Quality Data tables, the City/District also monitored for, but did not detect, many other contaminants during 2019. Some of those contaminants were:

- Antimony
- Asbestos
- Beryllium
- Cadmium
- Chromium 6
- Cyanide
- Foaming Agents
- Herbicides
- Mercury
- MTBE
- Nitrite
- Perchlorate
- Pesticides
- Radium 226
- Radium 228
- Tritium
- Silver
- Strontium-90
- Thallium
- Total Chromium
- Volatile Organic Chemicals (VOCs)
- Zinc

Water suppliers are required to provide information on the presence of radon in water sources. A known human carcinogen, radon is a radioactive gas that one cannot see, taste, or smell. Commonly found in soils throughout the United States, breathing air containing radon may lead to lung cancer. Drinking water containing radon may also cause increased risk of stomach cancer. Radon can seep up through the ground and into homes and other structures through cracks and holes in foundations. Over time, concentrations of the gas can increase to high levels potentially exposing inhabitants to greater health risks. It is possible that radon can also be released from tap water when used for showering, washing dishes, and other household activities. However, the concentration of radon released through tap water is in most cases assumed to be considerably lower than concentrations entering a home from underlying ground. If you are concerned about radon, you are advised to test the air in your home. Testing is inexpensive and easy. The EPA recommends taking measures to reduce radon levels in your home if concentrations are 4 Picocuries per liter of air (pCi/L) or higher. For additional information, call your State radon program (1-800-745-7236), the EPA Safe Drinking Water Act Hotline at (1-800-426-4791), or call the National Safe Council Radon Hotline (1-800-SOS-RADON).

WATERSHED PROTECTION

Protection of drinking water is everyone’s responsibility. We invite you to join our efforts to protect surface waters in Ventura County, or watersheds, by visiting www.cleanwatershed.org.

We must continue using water as efficiently as possible as it is a precious resource. We have been fortunate to receive precipitation to feed our lawns and gardens, as well as fill the State’s reservoirs. This is the typical cycle seen in our region, where droughts and rainy seasons recur. With the changing climate, we will inevitably experience longer and more intense droughts. In addition, State law requires all of us to use water efficiently. Efficient water use is the most cost-effective way to extend water supply reliability and to assure our sustained supply of this essential resource.

MAKING CONSERVATION A WAY OF LIFE

Since nearly 70% of the water used in Simi Valley is for irrigation, the most significant savings can be realized with investments in sustainable landscape and high efficiency irrigation. Simi Valley water customers are eligible for a turf replacement rebate of $2 per square foot, by visiting www.bewaterwise.com. Also, see www.venturacountygardening.com for sustainable landscape designs, galleries of colorful, climate-appropriate plants, and tours of local gardens. Businesses and HOAs with an acre or more of irrigated landscape are eligible for an irrigation survey, at no cost, by applying at www.bewaterwise.com. Simi Valley water customers are also eligible for bewaterwise.com rebates. Learn more about local resources, rebates, and requirements by visiting www.simivalley.org/waterconservation. For the latest water information and more, like us at www.facebook.com/SimiValleyH2O and follow us at https://twitter.com/SimiValleyH2O.

WATER QUALITY RESULTS

In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (USEPA) and the State Water Resources Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health. The City/District suppliers, and the City/District, must sample the water and conduct laboratory testing for various minerals and constituents to monitor water quality.

The Tables on the next page list the drinking water contaminants that were detected in City/District drinking water during 2019. The presence of contaminants in the water does not necessarily constitute a health risk. The data presented in the Tables are from testing performed between January 1 and December 31, 2019, unless otherwise noted. Applicable Abbreviations, Definitions and Notes are identified at the conclusion of the Tables.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State MCL (b)</th>
<th>PHG (MCLG) (c)</th>
<th>DLR</th>
<th>Range Average</th>
<th>Tapo Cyn Plant (b)</th>
<th>Metropolitan Tonnant Plant</th>
<th>Calleguas Lake board Plant</th>
<th>Potential Major Sources if Detected in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbidity</td>
<td>NTU (a)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Highest single value: 0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 < NTU</td>
</tr>
<tr>
<td>MICROBIOLOGICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(b)</td>
</tr>
<tr>
<td>Total Coliform Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Range</td>
</tr>
<tr>
<td>NITROGENOUS ORGANS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>ppm</td>
<td>1000</td>
<td>50</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Arsenic</td>
<td>ppm</td>
<td>10</td>
<td>0.004</td>
<td>2</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Treatment-related Fluoride (c)</td>
<td>ppm</td>
<td>2.0</td>
<td>1</td>
<td>0.1</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>ppm</td>
<td>10</td>
<td>10</td>
<td>0.4</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Selenium</td>
<td>ppm</td>
<td>50</td>
<td>30</td>
<td>5</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>RADIOLOGICALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>pCi/L</td>
<td>15</td>
<td>0</td>
<td>3.0</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Gross Beta (α)</td>
<td>pCi/L</td>
<td>50</td>
<td>0</td>
<td>4.0</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Uranium</td>
<td>pCi/L</td>
<td>20</td>
<td>0.4</td>
<td>1.0</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>DISINFECTION BY-PRODUCTS AND DISINFECTANT RESIDUALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boron (e)</td>
<td>ppm</td>
<td>10</td>
<td>0.1</td>
<td>1.0</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Chlorine Residual</td>
<td>ppm (4.0 MRLG) (d)</td>
<td>25</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Haloacetic Acids (f)</td>
<td>ppm</td>
<td>60</td>
<td>NA</td>
<td>1.0</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Trihalomethane (f)</td>
<td>ppm</td>
<td>80</td>
<td>NA</td>
<td>1.0</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>SECONDARY DRINKING WATER STANDARDS (SDWS) - AESTHETIC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminum</td>
<td>ppm</td>
<td>200</td>
<td>60</td>
<td>50</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>500</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Color Units</td>
<td></td>
<td>15</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Odor Threshold</td>
<td>TON</td>
<td>3</td>
<td>NA</td>
<td>1</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Specific Conductance</td>
<td>µS/cm</td>
<td>1600</td>
<td>-</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sulfate</td>
<td>ppm</td>
<td>500</td>
<td>NA</td>
<td>0.5</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>ppm</td>
<td>1000</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ADDITIONAL PARAMETERS (UNREGULATED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>ppm</td>
<td>5</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Barium</td>
<td>ppm</td>
<td>100</td>
<td>NA</td>
<td>0.1</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Calcium</td>
<td>ppm</td>
<td>1000</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Chloride</td>
<td>ppm</td>
<td>500</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Comdras (g)</td>
<td>AI</td>
<td>8000</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Hardness (Total Hardness)</td>
<td>ppm</td>
<td>150</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Magnesium</td>
<td>ppm</td>
<td>1000</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>N-Nitrosodi-methylamine (NDMA)</td>
<td>ppt</td>
<td>NA</td>
<td>30</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Perfluorohexanoic Acid (PFHxS) (i)</td>
<td>ppt</td>
<td>NA</td>
<td>100</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>pH</td>
<td>pH Units</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Potassium</td>
<td>ppm</td>
<td>800</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Sodium</td>
<td>ppm</td>
<td>200</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Total Organic Carbon</td>
<td>ppm</td>
<td>50</td>
<td>NA</td>
<td>0.3</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Vanadium</td>
<td>ppm</td>
<td>50</td>
<td>NA</td>
<td>-</td>
<td>Range</td>
<td>NA</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>
Microbiological Contaminants

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>State MCL</th>
<th>PHG (MCLG)</th>
<th>Highest % of monthly sample detection</th>
<th>No. of site exceeding AL</th>
<th>Potential Major Sources if Detected in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Coliform Bacteria</td>
<td>(b)</td>
<td>> 1</td>
<td>0</td>
<td>0.15</td>
<td>0</td>
<td>Naturally present in the environment</td>
</tr>
<tr>
<td>Fecal Coliform Bacteria</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Human and animal waste</td>
</tr>
</tbody>
</table>

Sampling Results Showing the Detection of Lead and Copper

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Units</th>
<th>State MCL</th>
<th>PHG (MCLG)</th>
<th>DLR</th>
<th>Sample Date</th>
<th>No of Samples Collected</th>
<th>90th Percentile</th>
<th>No of Site exceeding AL</th>
<th>Potential Major Sources if Detected in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>ppm</td>
<td>AL=15</td>
<td>0.2</td>
<td>5</td>
<td>2019</td>
<td>30</td>
<td>0.001</td>
<td>0</td>
<td>Erosion of natural deposits; internal corrosion of house pipes</td>
</tr>
<tr>
<td>Copper</td>
<td>ppm</td>
<td>AL=1.3</td>
<td>0.3</td>
<td>0.05</td>
<td>2019</td>
<td>30</td>
<td>0.19</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Testing for Lead in Schools

- **Lead in Schools**: ppb AL=15 0.2 5 2017 58 N/A 0
 - Sixteen Schools were tested - all results were below the MCL of 15 ppb

Disinfection By-Products and Disinfectant Residuals

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>State MCL</th>
<th>PHG (MCLG)</th>
<th>DLR</th>
<th>Range Average</th>
<th>Tapo Cyn Plant (h)</th>
<th>WW8D System Wide</th>
<th>Potential Major Sources if Detected in Drinking Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Chlorine Residual</td>
<td>ppm</td>
<td>(4.0) MRLD</td>
<td>[4]</td>
<td>NA</td>
<td>Range</td>
<td>1.0 - 2.7</td>
<td>5.0 - 7.5</td>
<td>Drinking water disinfectant added for treatment</td>
</tr>
<tr>
<td>Haloacetic Acids (f)</td>
<td>ppb</td>
<td>60</td>
<td>NA</td>
<td>1.0</td>
<td>Highest LRAA</td>
<td>2.1</td>
<td>2.2</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Total Trihalomethane (f)</td>
<td>ppb</td>
<td>80</td>
<td>NA</td>
<td>1.0</td>
<td>Highest LRAA</td>
<td>5.1</td>
<td>14.8 - 27.2</td>
<td></td>
</tr>
</tbody>
</table>

Water Quality Data

- **Total Chlorine Residual**: ppm MRLD = Maximum Residual Disinfectant Level Goal
- **Haloacetic Acids (f)**: ppb
- **Total Trihalomethane (f)**: ppb

Microorganisms

- **Samples**: Units
- **State MCL**: PHG (MCLG)
- **Highest % of monthly sample detection**: No. of site exceeding AL

Microbial Contaminants

- **Samples**: Units
- **State MCL**: PHG (MCLG)
- **Highest % of monthly sample detection**: No. of site exceeding AL

Sampling Results

- **Lead**: ppm AL=15 0.2 5 2019 30 0.001 0
- **Copper**: ppm AL=1.3 0.3 0.05 2019 30 0.19 0

Testing for Lead in Schools

- **Lead in Schools**: ppb AL=15 0.2 5 2017 58 N/A 0
 - Sixteen Schools were tested - all results were below the MCL of 15 ppb

Disinfection By-Products and Disinfectant Residuals

- **Parameter**: Units
- **State MCL**: PHG (MCLG)
- **DLR**: Range Average
- **Range**: Tapo Cyn Plant (h) WW8D System Wide
- **Potential Major Sources if Detected in Drinking Water**: Drinking water disinfectant added for treatment
 - By-product of drinking water disinfection

Abbreviations and Notes

- **AF** = Acre Foot
- **AI** = Aggressive Index
- **MRDL** = Maximum Residual Disinfectant Level
- **MRLD** = Maximum Residual Disinfectant Level Goal
- **MTBE** = Methyl tertiary butyl ether
- **CFU/mL** = Colony-Forming Units per milliliter
- **N/A** = Not Applicable
- **ND** = None Detected
- **MCL** = Maximum Contaminant Level Goal
- **MCLG** = Maximum Contaminant Level Goal
- **NL** = Notification Level
- **NTU** = Nephelometric Turbidity units
- **pCi/L** = Picocuries per liter
- **PDWS** = Primary Drinking Water Standard
- **PHG** = Public Health Goal
- **PHFA** = Perfluorohexanoic Acid
- **ppb** = parts per billion, or micrograms per liter (μg/L)
- **ps/cm** = microSiemens per centimeter
- **ppm** = parts per million, or milligrams per liter (mg/L)
- **ppt** = parts per trillion, or nanograms per liter (ng/L)
- **RAA** = Running Annual Average
- **SDWS** = Secondary Drinking Water Standard
- **TON** = Threshold Odor Number
- **TT** = Treatment Technique

WATER QUALITY DATA

Ventura County Waterworks District No. 8 (WW8D) - Distribution Water Quality

- **Microbiological Contaminants**
- **Sampling Results Showing the Detection of Lead and Copper**
- **Testing for Lead in Schools**
- **Disinfection By-Products and Disinfectant Residuals**

Microorganisms

- **Samples**: Units
- **State MCL**: PHG (MCLG)
- **Highest % of monthly sample detection**: No. of site exceeding AL

Sampling Results

- **Lead**: ppm AL=15 0.2 5 2019 30 0.001 0
- **Copper**: ppm AL=1.3 0.3 0.05 2019 30 0.19 0

Testing for Lead in Schools

- **Lead in Schools**: ppb AL=15 0.2 5 2017 58 N/A 0
 - Sixteen Schools were tested - all results were below the MCL of 15 ppb

Disinfection By-Products and Disinfectant Residuals

- **Parameter**: Units
- **State MCL**: PHG (MCLG)
- **DLR**: Range Average
- **Range**: Tapo Cyn Plant (h) WW8D System Wide
- **Potential Major Sources if Detected in Drinking Water**: Drinking water disinfectant added for treatment
 - By-product of drinking water disinfection

Abbreviations and Notes

- **AF** = Acre Foot
- **AI** = Aggressive Index
- **MRDL** = Maximum Residual Disinfectant Level
- **MRLD** = Maximum Residual Disinfectant Level Goal
- **MTBE** = Methyl tertiary butyl ether
- **CFU/mL** = Colony-Forming Units per milliliter
- **N/A** = Not Applicable
- **ND** = None Detected
- **MCL** = Maximum Contaminant Level Goal
- **MCLG** = Maximum Contaminant Level Goal
- **NL** = Notification Level
- **NTU** = Nephelometric Turbidity units
- **pCi/L** = Picocuries per liter
- **PDWS** = Primary Drinking Water Standard
- **PHG** = Public Health Goal
- **PHFA** = Perfluorohexanoic Acid
- **ppb** = parts per billion, or micrograms per liter (μg/L)
- **ps/cm** = microSiemens per centimeter
- **ppm** = parts per million, or milligrams per liter (mg/L)
- **ppt** = parts per trillion, or nanograms per liter (ng/L)

Ventura County Waterworks District No. 8 (WW8D) - Distribution Water Quality

- **Microbiological Contaminants**
- **Sampling Results Showing the Detection of Lead and Copper**
- **Testing for Lead in Schools**
- **Disinfection By-Products and Disinfectant Residuals**

Microorganisms

- **Samples**: Units
- **State MCL**: PHG (MCLG)
- **Highest % of monthly sample detection**: No. of site exceeding AL

Sampling Results

- **Lead**: ppm AL=15 0.2 5 2019 30 0.001 0
- **Copper**: ppm AL=1.3 0.3 0.05 2019 30 0.19 0

Testing for Lead in Schools

- **Lead in Schools**: ppb AL=15 0.2 5 2017 58 N/A 0
 - Sixteen Schools were tested - all results were below the MCL of 15 ppb

Disinfection By-Products and Disinfectant Residuals

- **Parameter**: Units
- **State MCL**: PHG (MCLG)
- **DLR**: Range Average
- **Range**: Tapo Cyn Plant (h) WW8D System Wide
- **Potential Major Sources if Detected in Drinking Water**: Drinking water disinfectant added for treatment
 - By-product of drinking water disinfection

Abbreviations and Notes

- **AF** = Acre Foot
- **AI** = Aggressive Index
- **MRDL** = Maximum Residual Disinfectant Level
- **MRLD** = Maximum Residual Disinfectant Level Goal
- **MTBE** = Methyl tertiary butyl ether
- **CFU/mL** = Colony-Forming Units per milliliter
- **N/A** = Not Applicable
- **ND** = None Detected
- **MCL** = Maximum Contaminant Level Goal
- **MCLG** = Maximum Contaminant Level Goal
- **NL** = Notification Level
- **NTU** = Nephelometric Turbidity units
- **pCi/L** = Picocuries per liter
- **PDWS** = Primary Drinking Water Standard
- **PHG** = Public Health Goal
- **PHFA** = Perfluorohexanoic Acid
- **ppb** = parts per billion, or micrograms per liter (μg/L)
- **ps/cm** = microSiemens per centimeter
- **ppm** = parts per million, or milligrams per liter (mg/L)
- **ppt** = parts per trillion, or nanograms per liter (ng/L)